
Electronic Elections:
Trust Through Engineering

Carsten Schürmann
IT University of Copenhagen

Copenhagen, Denmark
carsten@itu.dk

Abstract—Electronic voting technology is a two edged sword.
It comes with many risks but brings also many benefits. Instead
of flat out rejecting the technology as uncontrollably dangerous,
we advocate in this paper a different technological angle that
renders electronic elections trustworthy beyond the usual levels
of doubt. We exploit the trust that voters currently have into
the democratic process and model our techniques around that
observation accordingly. In particular, we propose a technique
of trace emitting computations to record the individual steps
of an electronic voting machine for a posteriori validation on
an acceptably small trusted computing base. Our technology
enables us to prove that an electronic elections preserves the
voter’s intent, assuming that the voting machine and the trace
verifier are independent.

I. INTRODUCTION

The word electronic in an electronic election refers to
both, the electronic method of casting a vote and the
electronic method of computing the final result. Any spec-
ification of requirements for an electronic election needs
to span the entire process, from voter registration to the
approval of the final election result. Considering that our
understanding of trust, safety, secrecy, availability, privacy,
and correctness in terms of logic and formal specification
is still at large implies that traditional software verification
techniques currently do not (yet) apply to this setting.

In this paper we therefore leave the idea of formal
verification and mathematical specification behind, and focus
instead on the engineering aspects of as electronic election
system by ensuring that the components that are responsible
for gaining trust into the traditional voting process are mir-
rored by tangible components in the electronic counterpart.
In particular, we believe that the following three principles
justify to a significant degree why people believe in the
electoral process and trust that the traditional election really
measures the voter’s intent.

1) The election process is closed, which means that no
information other than the result may leak from the
process. It follows that ballots must be anonymized,
which is achieved, for example, by having them cast
into a ballot box.

2) Representatives of the invested parties oversee the
counting process. By there mere presence they intro-
duce accountability into the process. It is not the voter

who checks that a vote was counted correctly, this task
is delegated to a representative.

3) In the case of dispute, there is the possibility of re-
counting the original and untouched physical evidence.
This possibility constitutes a safety net and contributes
to the trustworthiness of the process.

Therefore, we stipulate that an electronic election system
must be held accountable for the result of an election.
Its design must therefore be transparent, which means
that it should be possible to follow and verify the steps
of a computation, and for all practical purposes, this can
only be achieved if the voting machine provides abstract,
anonymous, and tangible evidence. Our design is inspired
by the frog model [SBR01], as we make a difference
between the voting machine (vote generation machine), and
the trace machine (vote casting machine). That we reduce
the trusted computing base from some a “standard interface
that performs a very simple set of functions” to a small, easy
to implement, and verified type checker is one of the main
contributions of this work.

Principle 1: We implement the voting generation machine
as an abstract machine on an untrusted computing platform.
The physical machine simulates the individual steps of the
voting machine algorithm and records the trace. Conse-
quently, it has access to the memory locations where the
counters are stored. In this work, we focus on detecting
unjustified updates to these counters without making ballots
public. Privacy, security, and availability concerns are mostly
orthogonal to the design of the abstract machine, and can be
tackled using cryptographic methods, such as homomorphic
encryption. Differently from the frog model, our voting
machine does not only generate frogs but counts itself.

Principle 2: We propose that the voter (as usual) goes into
the voting booth, casts the vote, obtains physical evidence
(such as a frog) and casts it into the ballot box. This
evidence contains the operational meaning of the ballot, i.e.
the particular part of the computation trace that witnesses
the counting of the ballot. This evidence may or may not be
readable by the voter. In the later case, we permit scanning
devices “representing” the different parties into the voting
booth. A voter should only use the scanner that he or
she trusts to interpret the content of the ballot and not to

misuse the information contained within. This way, even a
configuration problems in the graphical user interface can
be detected.

Principle 3: Technically, our solution employs trace emit-
ting computation (TEC). The idea of TEC is orthogonal
but closely related to the idea of proof carrying code
(PCC) [Nec97] and which works as follows: while the
electronic voting machine is running, it constructs a witness
trace that accounts for every step it took. We employ logical
framework [HHP93] technology to specify these operations
and their respective meaning. Just as in the original proof
carrying code work, we use a small trusted implementation
of the LF type checker to certify traces and check them
for equivalence. Therefore, we will be able to detect, if
malware [CHF07] has compromised the functional behavior
(but neither privacy nor secrecy) of the machine. The traces
can be used in a recount.

In this work, we discuss the design of one single voting
machine. We hope, however, that the reader can extrapolate
an idea from reading this paper, how trace emitting computa-
tions could scale to the entire electoral process. For example,
we conjecture that this technique can be used to verify the
traces of algorithms that map voting totals into number of
seats. Although further experimental work is necessary, we
believe that this is a novel idea.

The paper is organized as follows. In Section II we define
what we mean by voter’s intent, followed by Section III
where we outline the technique of trace emitting compu-
tations. We move then on and describe a sample election
in Section IV, its encoding in the logical framework LF
in Section V, and give an experience report on the ITU
election in Section VI. Eventually we analyze our technique
in Section VII discuss how the ideas scale to larger elections
in Section VIII and conclude with Section IX.

II. PRELIMINARY DEFINITIONS

We shall write V for the set of voters, B for the set
of valid ballots, O for the set of possible outcomes of an
election, and + for the tallying operation. + redefines the
usual understanding of +, as we use it to add up ballots.

Definition 2.1 (Voter’s intent): Let V be a set of voters
who cast a vote, B the set of valid ballots, then I : V → B
is called the voters intent.

We measure the voters intent as
∑

v∈V I(v). Our interest
focuses on the mathematical meaning of the voter’s intent. It
does not take any other factors into account that may mislead
the voter, such as for example the user interface [Eve07].
Next we shift our attention towards the domain specific
language used to program electronic voting machines that
run on the abstract machine (simulated by the physical
machine). From here on forth we refer to programs as
expressions e that return (when executed) values for which
we write w. The operational semantics relates expressions
e and w for which we define in Section IV the judgment

e ↪→ w (pronounced e evaluates to w). We write pbq for
the value w that represents b ∈ B in the domain specific
language. We furthermore assume that the domain specific
language provides (besides functional abstraction) an appli-
cation operation, for which we write apply. For simplicity,
we assume that this domain specific language supports
also lists [. . .], and the corresponding case construct. Let
dre be the electronic voting program (to be defined in
Section IV) that is bound to be executed on the electronic
voting machine. Let there be n voters V = {v1 . . . vn}
participating in the election.

Definition 2.2 (Trustworthiness): We call a program dre
trustworthy if it can be guaranteed that

apply dre [pI(v1)q, . . . , pI(vn)q] ↪→ w

and w = p
∑

v∈V I(v)q.
The central idea of this paper is to validate each individual

run of dre against the voter’s intent as opposed to for
example public access to partial vote information [RS07].
The problem with proposals of this kind is, however, that
they violate the first and last principle outlined in the
introduction and therefore endanger trust.

III. TRACE EMITTING COMPUTATIONS

Trace emitting computations (TEC) are designed to record
a particular run of an electronic voting machine. It creates
a trace of all steps executed and all decisions made, in such
a way that the trace can be used to redo the computation.
Once a particular computation ends, the resulting trace may
be inspected with respect to an a priori specified soundness
policy. Any violation, for example, inconsistencies in the
computation, can be recognized a posteriori. Checking a
trace for soundness is synonymous to validating the result
of the computation.

TEC can be seen as a dual to proof carrying code
(PCC) [Nec97]. In PCC, one agrees a priori on a safety
policy for code, which means under which conditions a
piece of code is considered safe. In TEC, one agrees a priori
on a soundness policy for code, which means under which
conditions a trace is to be considered valid. In PCC the
the proof is being checked before execution, in TEC the
trace is being checked after execution. In PCC the proof
describes a static specification of a piece of code, in TEC
the trace describes the dynamic behavior of a piece of code.
The short comings of TEC are also dual to PCC. In TEC
the soundness policy assumes a model of execution that only
approximates the a real machine, whereas in PCC, the safety
policy assumes a model of safety that only approximates full
correctness. With TEC we can gain trust into the dynamic
behavior of code, in PCC we can gain trust into the static
description of code.

In the remainder of this section, we make the idea of
trace emitting computations precise and show that with a
bit of clever engineering the result of an election can be

V

e ↪→ w 7−→ D

ok

@
@
@R

�
�
�	

@
@
@R

�
�
�	.

.

.

.

.

.

.

.

.
6

Figure 1. Diamond of trust

trusted beyond a reasonable level of doubt. Trust is created
by separating the machine that computes, which we will
simple refer to as the voting machine from another machine
that administers the trace, which we will refer to as the
trace machine. It is important, that those two machines are
assumed independent. That is they do not share any common
knowledge prior to an election that could be exploited to
synchronize the two machines differently from the way that
we describe below.

While the voting machine computes w from e it implicitly
creates a trace D. This trace is not directly shared with
the voting machine and it will not be recomputed on the
trace machine either; it will simply be reconstructed from
the ballots. In TEC, ballots no longer contain only bits
of information about which candidate was selected, they
contain instead fragments of the trace of what the electronic
voting machine did in order to count a vote. Therefore,
trust is created by the voting machine channeling the trace
fragment responsible for counting the vote through the voter
in form of physical evidence, such as a printed ballot (which
we will discuss in Section VI, depicted in Figure 6). The
authenticity and correctness of the ballot is checked by the
trace machine as well.

This idea is depicted in the diamond of trust in Figure 1.
The top of the diamond depicts a voter V who would like
to be convinced that if e evaluates to w, w is indeed the
correct value. The solid arrows depict actions, for example
the the arrow from V to e ↪→ w depicts the interaction
of the voter with the voting machine. The arrow between
V and D depicts the interaction between the voter and the
trace machine. The arrow between e ↪→ w and D indicates
the trusted communication of a trace (fragment) encoded in
form of a ballot between the voting and the trace machine.
The physical evidence must be carefully engineered; it must
guarantee the basic democratic principles of a free and secret
vote. For example, it should not be possible to sort the
different trace fragments revealing information the order in
which votes were cast.

The trust inducing scanners that are present in the vot-
ing booth pose an improvement over the traditional way
elections are held. Since the rules of the election are fixed

V

e1 ↪→ w1

e2 ↪→ w2

(e1, e2) ↪→ (w1, w2)

7−→

7−→

7−→

D1

D2

evpair e1 e2 D1 D2

ok

@
@
@R

�
�

��	

@
@
@R

�
�
�	.

.

.

.

.

.

.

.

.

.

.

.

6

Figure 2. Compositionality

ahead of time and are public, the scanners may even display
information about which candidate was not elected. This
information could be extremely helpful to detect faults and
absent names from the roaster displayed on the voting
machine. At the end of the election day, the election officials
collect the different trace fragments of D from the ballot box
and attempt to verify that D is indeed a valid computation
trace of a computation ending in w = p

∑
v∈V I(v)q. Should

the voting machine and the trace machine agree, we are
confident to claim that the result can be trusted. If not, an
irregularity was detected. Irregularities of this kind might
occur, if a voter fails to follow instructions and does not
cast the vote. This problem is well known, and occurs
with the Belgian Jites and Digivote systems, and with the
U.S. Populex system. What to do in this case needs to be
determined by policy.

Note, that trust diamonds are compositional. Consider two
separate computations e1 ↪→ w1 and e2 ↪→ w2, which
the voting machine wants to pair together. By the rules of
evaluation, (e1, e2) ↪→ (w1, w2). Figure 2 provides some
evidence why we can trust the pairing operation. From the
first and the second premiss we gain access to the traces D1

and D2 for validation, the instruction evpair combines traces
to a new trace. If evpair can only be applied one way and
the definition of evpair has been inspected ahead of time,
and no other information is crossing the dotted arrow, we
state with confidence that the evaluation of (e1, e2) is still
trustworthy.

Under the assumption that the voting machine and the
trace machine are truly independent, we claim that the
election result deserves the trust of the people even though it
was achieved without any human observer. Thanks to TEC,
the reconstructed D contains all information, all decisions
that the election machine did, and that can be verified by
anyone post election. Although the individual cannot see
his or her vote a posteriori, the trust into the system can be
derived from the same principle as in a traditional election,
namely that every step is explicit, and analyzed by all

invested entities.

IV. SAMPLE ELECTION

The rules that govern an election should be seen as a way
to fill the diamond of trust with meaning. To declare the
judgment, we shrink the form of the diamond of trust to
e ↪→ w ♦ D, whose meaning is defined below. First, we
define the domain specific language for programming the
election machine in terms of values w, expressions e, where
we assume for simplicity, that there are only two different
ballots A and B, and traces D.

w ::= x | A∗ | B∗ | lam∗ x. e | 0∗ | s∗ w
| pair∗ w1 w2 | nil∗ | cons∗ w1 w2

e ::= !w | A | B | (case x of A⇒ e1 | B⇒ e2)
| lam x. e | apply e1 e2 | 0 | s e
| pair e1 e2 | fst e | snd e
| nil | cons e1 e2 | fold e1 e2 (x⇒ y ⇒ e3)

D ::= ev! | axA | axB | caseA e e1 e2 w D1 D2

| caseB e e1 e2 w D1 D2 | evlam (λx. e)
| evapp e1 e2 (λx. e′1) w2 w D1 D2 D3

| evsucc e w D | evpair e1 e2 w1 w2 D1 D2

| evfst e w1 w2 D | evsnd e w1 w2 D
| evnil | evcons e1 e2 w1 w2 D1 D2

| evfold1 e1 e2 (λx. λy. e3) w D1 D2

| evfold2 e1 e2 (λx. λy. e3) w w11 w12 w2 D1 D2 D3

This language defines constants representing votes (here
A and B), functions, unary numbers, pairs and lists. We
do not not define a type system, or a typing discipline.
The computation model and the following program dre are
known before the election, so the election program can be
type checked ahead of time.

Example 4.1 (Voting machine code): We consider the
following program that we would like to run on the voting
machine.

dre = lam x. fold x (pair 0 0) (h⇒ r ⇒
case h of A⇒ pair (s (fst r)) (snd r)

| B⇒ pair (fst r) (s (snd r)))

Figure 3 defines the meaning of the evaluation judgment
that emits the trace e ↪→ w ♦ D. The rules that provide
the respective evidence axA and axB witness that a vote has
been cast. The subsequent two rules for caseA and caseB
define the corresponding elimination forms, which allows a
voting algorithm to case on which vote was cast.

In general for arbitrary elections there are usually more
than only finitely many valid ballots. In more complicated
scenarios where ballots require the voter to distribute per-
centages to the different candidates, there may even be in-
finitely many valid ballots. This is were our technique excels,
in part because ballots are usually finitely axiomatizable.

The two rules for evlam and evapp allow the voting
machine to work with functions. They describe the respec-
tive introduction and elimination laws. The rules for evzero

and evsucc witness the counting, and the rules for evpair,
evfst, and evsnd provide the possibility to work with n-ary
counters used for aggregation toward the final result whereas
the final four rules for evnil, evcons, evfold1, and evfold2

introduce introduction and elimination forms for lists.
This domain specific language for defining the software of

a voting machine is based on a unary encoding of numbers.
For a real electronic voting architecture we recommend
working with a base-10 encoding, which would be best
because humans can immediately read out the result of an
election by inspecting the value.

The syntactic form of traces D are full of redundant in-
formation. Thus we take the freedom, and omit all inferable
arguments from D when used in the remainder of the paper.

Next we illustrate the idea of trace emitting computations
using a concrete example. Consider a situation where three
voters cast a vote for two candidates in the order A,B,A.
The voters intent is therefore

∑
v∈V I(v) = (2, 1). What we

need to convince ourselves is therefore that
apply dre (cons A (cons B (cons A;nil)))
↪→ pair (s (s 0)) (s 0) ♦ D0

(1)

The D0 can be more easily constructed if we introduce the
following abbreviations.

empty = (pair 0 0)

count h r = case (!h) (pair (s (fst (!r))) (snd (!r)))
(pair (fst (!r))(s (snd (!r)))))

init = evfold1 ev! (evpair evzero evzero)

votea D = evfold2 ev! D
(evcasea ev! (evpair (evsucc (evfstev!))

(evsnd ev!)))

voteb D = evfold2 ev! D
(evcaseb ev! (evpair (evfstev!) (evsucc

(evsnd ev!))))

Here, votea and voteb define the operational meaning a
ballot for A and B, respectively, which is independent of the
current counter as it is λ-abstracted away. In more complex
elections with, for example, fractional ballots there are many
more (potentially infinitely many) valid ballots, where the
operational meaning of a ballot becomes more complex and
even more important. The following invariants hold.

(fold (!nil∗) empty count) ↪→ (pair∗ 0∗ 0∗) ♦ init

(fold (!L) empty count) ↪→ (pair∗ X Y) ♦ D

(fold (!(cons∗ A∗ (!L))) empty count)
↪→ (pair∗ (s∗ X) Y) ♦ votea D

(fold (!L) empty count) ↪→ (pair∗ X Y) ♦ D

(fold (!(cons∗ B∗ (!L))) empty count)
↪→ (pair∗ X (s∗ Y)) ♦ voteb D

A ↪→ A ♦ axA B ↪→ B ♦ axB

e ↪→ A ♦ D1 e1 ↪→ w ♦ D2

case e of A⇒ e1 | B⇒ e2 ↪→ w ♦ caseA e e1 e2 w D1 D2

e ↪→ B ♦ D1 e2 ↪→ w ♦ D2

case e of A⇒ e1 | B⇒ e2 ↪→ w ♦ caseB e e1 e2 w D1 D2

!w ↪→ w ♦ ev! lam x. e ↪→ lam x. e ♦ evlam (λx. e)

e1 ↪→ lam x. e′1 ♦ D1

e2 ↪→ w2 ♦ D2

[w2/x]e′1 ↪→ w ♦ D3

apply e1 e2 ↪→ w ♦ evapp e1 e2 (λx. e′1) w2 w D1 D2 D3

0 ↪→ 0 ♦ evzero

e ↪→ w ♦ D

s e ↪→ s w ♦ evsucc e w D

e1 ↪→ w1 ♦ D1 e2 ↪→ w2 ♦ D2

pair e1 e2 ↪→ pair w1 w2 ♦ evpair e1 e2 w1 w2 D1 D2

e ↪→ pair w1 w2 ♦ D

fst e ↪→ w1 ♦ evfst e w1 w2 D

e ↪→ pair w1 w2 ♦ D

snd e ↪→ w2 ♦ evsnd e w1 w2 D

nil ↪→ nil ♦ evnil

e1 ↪→ w1 ♦ D1 e2 ↪→ w2 ♦ D2

cons e1 e2 ↪→ cons w1 w2 ♦ evcons e1 e2 w1 w2 D1 D2

e1 ↪→ nil ♦ D1 e2 ↪→ w ♦ D2

fold e1 e2 e3 ↪→ w ♦ evfold1 e1 e2 (λx. λy. e3) w D1 D2

e1 ↪→ cons w11 w12 ♦ D1

fold w12 e2 e3 ↪→ w2 ♦ D2

[w11/x][w2/y]e3 ↪→ w ♦ D3

fold e1 e2 (x⇒ y ⇒ e3) ↪→ w ♦
evfold2 e1 e2 (λx. λy. e3) w w11 w12 w2 D1 D2 D3

Figure 3. Diamond judgment, Arithmetic

Using these abbreviations, and a little bit of work, we
define

D0 = evapp evlam ev! (votea (voteb (votea init)))

and check that it is indeed a valid trace. This is the trace that
we would expect the voting machine to construct according
to (1).

At closing time, the voting machine will announce the
outcome of the election is pair (s (s 0)) (s 0). The ballot
box will contain two pieces of physical evidence that contain
votea and one that contains voteb. Those ballots will be
scanned (by a machine that is independent of the voting
machine), the actual evidence of the election D0 constructed.
Thankfully, no matter in which order the evidence is re-
constructed, the election result is verified by checking the
evidence against (1). As voting machine and trace machine
are assumed independent, the technology will detect if votes
have been tempered with. Conversely, the machine can also

determine, if a voter did vote electronically, but did not cast
the ballot into the ballot box.

Recall that in this paper we are concerned about the fact
if a voting machine captures the voter’s intent, which means
that we are interested in detecting irregularities that occurred
while counting votes. The study of recovering measures is
left to future work.

Theorem 4.2: If

L = cons∗ pI(v1)q . . . (cons∗ pI(vn)q nil)

and

Di =
{
votea if I(vi) = A
voteb if I(vi) = B

then fold (!L) empty count) ↪→ w ♦ DL iff w =
p
∑

i=1...n I(vi)q and DL = D1 (. . . (Dn init)).
Proof: by induction on n. In each case, apply one of

the three invariants from above.

Theorem 4.3 (Trusted Election): Under the same as-
sumptions as above, apply dre L ↪→ w ♦ D iff w =
p
∑

i=1...n I(vi)q and D = evapp evlam ev! DL.

V. LOGICAL FRAMEWORKS

The technique trace emitting computations is directly
amenable to implementation using logical frameworks. We
concentrate on the logical framework LF [HHP93] and the
implementation in Twelf [PS99] reducing the need for trace
checking to type checking. Our experiments regarding a real
election are described in Section VI.

The logical framework LF serves as a meta-language
for representing expressions, values, and traces. It is a
dependently typed λ-calculus that offers the possibility to
declare new constants on the type level, which are called
type families if indexed by terms, and object level constants.
LF subscribes to the judgments as types paradigm.

Any of these categories can be represented as type fami-
lies exp, val, and eval E V, respectively. We have given
the precise Twelf encodings of the values and expressions
in Figure 4, and the encodings for traces in Figure 5.
For simplicity the Twelf encodings use the same naming
convention as Figure 3.

In Twelf, we write type for the kind of a type, and use
curly braces {x:exp} for dependent types and dependent
kinds. We write -> (infix) if the dependency is vacuous. Fur-
thermore, we write [x:exp] for λ-abstraction, (x:exp)
for type ascription, and juxtaposition for application pro-
vided by the logical framework. We write ` for the typing
judgment in LF. Without loss of generality, we assume all
LF derivations to be in normal form.

The representation of traces is adequate, in the sense that
the representation function between syntactic categories and
types in LF are bijections. This means, for example that if D
is a valid trace for “e evaluates to v” then its representation
is a closed normal form of type eval E V, and vice versa.

Theorem 5.1 (Adequacy): 1) Let e be an expression
and let us write e for its encoding in LF. Then e with
free variables among x1 . . . xn is valid if and only if
x1:val . . . xn:val ` e:exp.

2) Let w be a value and let us write w for its encoding
in LF. Then w with free variables among x1 . . . xn is
valid if and only if x1:val . . . xn:val ` w:val.

3) Let D be a trace and let us write D for its encoding
in LF. Also let e (e) and w (w) be an expression and
value respectively. Then e ↪→ w ♦ D is valid if and
only if ` D:eval e w.

Proof: by mutual structural induction on LF canonical
forms in one direction, and the structure of e, w, and D in
the other.

Furthermore, all bijections are compositional, in the sense
that β-reduction of the logical framework mimics precisely
substitution application of the language that we are are
encoding.

a* : val.
b* : val.
z* : val.
s* : val -> val.
lam* : (val -> exp) -> val.
pair* : val -> val -> val.
cons* : val -> exp -> val.
nil* : val.

! : val -> exp.
a : exp.
b : exp.
case : exp -> exp -> exp -> exp.
z : exp.
s : exp -> exp.
lam : (val -> exp) -> exp.
app : exp -> exp -> exp.
pair : exp -> exp -> exp.
fst : exp -> exp.
snd : exp -> exp.
nil : exp.
cons : exp -> exp -> exp.
fold : exp -> exp

-> (val -> val -> exp) -> exp.

Figure 4. Formalization: Values, Expressions

Theorem 5.2 (Compositionality): 1) Let e be an ex-
pression in which x occurs free and w a value.
Furthermore, let us write e and w for the encoding
of expression e and value w. The term that encodes
[w/x]e in Twelf is βη-equal to ([x:exp] e) w.

2) Let D : e ↪→ w be a trace in which u : e′ ↪→ w′

occurs free. Let us write e, w, D, D’ for the respective
encodings. The term that represents the instantiation
of a D′ : e′ ↪→ w′ for u in D: [D′/u]D, is βη equal
to ([u:eval e’ w’] D) D’.

Proof: by structural induction on the definition of
substitution.

These two facts might have the feel of be of academic
interest only, but they are instrumental in creating trust into
an electronic election based on trace emitting computations.
They allow us to use the LF type checker to validate traces.
The LF type checker is well-understood, it is small, and
implementations run on different platforms and are imple-
mented in different languages. There is one implementation
in machine code that is verified by hand [AMSV02].

The advantage of using an LF type-checker to validate
traces of electronic voting machines is due to the fact that
it is independent of the concrete configuration of a voting
machine, which means that its implementation does not
change, even if the language of expressions, values, and
traces is adapted from election to election. We will always

eval : exp -> val -> type.
ev! : {V:val} eval (! V) V.
eva : eval a a*.
evb : eval b b*.
evcasea:

{E:exp} {E1:exp} {W:val} {E2:exp}
eval E a* -> eval E1 W
-> eval (case E E1 E2) W.

evcaseb:
{E:exp} {E2:exp} {W:val} {E1:exp}

eval E b* -> eval E2 W
-> eval (case E E1 E2) W.

evlam: {E:val -> exp}
eval (lam ([x:val] E x))

(lam* ([x:val] E x)).
evapp:

{E1:exp} {E1’:val -> exp} {E2:exp}
{W2:val} {W:val}

eval E1 (lam* ([x:val] E1’ x))
-> eval E2 W2 -> eval (E1’ W2) W
-> eval (app E1 E2) W.

evzero: eval z z*.
evsucc: {E:exp} {W:val}

eval E W -> eval (s E) (s* W).
evpair:

{E1:exp} {W1:val} {E2:exp} {W2:val}
eval E1 W1 -> eval E2 W2
-> eval (pair E1 E2) (pair* W1 W2).

evfst: {E:exp} {W1:val} {W2:val}
eval E (pair* W1 W2)
-> eval (fst E) W1.

evsnd: {E:exp} {W1:val} {W2:val}
eval E (pair* W1 W2)
-> eval (snd E) W2.

evnil: eval nil nil*.
evcons:

{E1:exp} {W1:val} {E2:exp}
eval E1 W1
-> eval (cons E1 E2) (cons* W1 E2).

evfold1:
{E1:exp} {E2:exp} {W:val}
{E3:val -> val -> exp}

eval E1 nil* -> eval E2 W
-> eval (fold E1 E2 ([x] [y] E3 x y)) W.

evfold2:
{E1:exp} {W11:val} {E12:exp} {E2:exp}
{E3:val -> val -> exp} {W2:val} {W:val}

eval E1 (cons* W11 E12)
-> eval (fold E12 E2 ([x] [y] E3 x y)) W2
-> eval (E3 W11 W2) W
-> eval (fold E1 E2 ([x] [y] E3 x y)) W.

Figure 5. Formalization: Traces

use the same LF type checker, no matter if arithmetic is
carried out in unary, binary, or even decimal notation.

But not only this. The trace of the election could theoreti-
cally be published after the election is completed. If the trace
is constructed by randomly pasting the trace fragments casts
by voters, it is not in violation of principle 1. It can then be
checked by everyone, who understands how to implement
an LF type checker.

In summary, logical frameworks enable us to minimize
the trusted base of computation to a bare minimum, and
relieve us of the fact that we need to trust the compiler, the
semantics of the domain specific language, the hardware (to
a certain extend), the graphical user interface, the config-
uration of a concrete machine, the fear of a virus process
running in parallel, and gives us infinite confidence that the
software that is running on an electronic voting machine is in
fact the software that we expected to run. The LF signature
specifies all there is to be known about the setup of the
election.

VI. EXPERIMENTAL RESULTS

We have built an experimental electronic voting machine
based on the ideas of trace emitting computations. The
machine was deployed for the election of a member to
the board of the IT University of Copenhagen that took
place October 9 and October 10, 2007. The election had
a low participation record. The machine collected about 70
votes during the two days. Interestingly the majority of the
votes were cast during lunch break, but before lunch, in
an extremely short time span between 12:00 and 12:10. At
times, 10 to 15 people were waiting in line. This means,
that an effective processing of each vote was of the essence.
Note, that for explanatory purposes, we describe an altered
setup of the election. The setup for the real election was
highly experimental.

The hardware of our electronic voting machine was pro-
vided by an Apple Macintosh Powerbook Pro. It was placed
in an inaccessible corner of the voting booth, its keyboard
sealed. A mouse was provided to interact with the graphical
user interface. As we used USB sticks for authentication,
we needed to give the user access to the USB port, which
we did by a USB extension cord.

The process of voting was as follows. A prospective voter
enters the voting place, authenticates using a student id card,
and then obtains a USB stick which contains a software
token that enables him or her to cast exactly one vote. We
did not to solve the problem of making sure that the voter
can only vote once. The USB stick is inserted into the USB
extension cord, the machine awakens, the screen displays an
array of radio buttons, including a abstain to vote choice,
once a radio button is checked, the cast the vote button
becomes enabled, and the voter can cast the vote.

Afterwards, the machine computed the new intermediate
total, and recorded the steps it needed to do in form of a

Figure 6. Ballot for candidate A

trace fragment. The fragment was then printed as physical
evidence on a piece of paper in form of a barcode (see
Figure 6). Once printing was complete, the machine reverted
into waiting state to be activated by another prepared USB
stick. The voter picked up the physical evidence, and on
the way out, just as in a traditional election, dropped the
ballot into the ballot box and discarded the now useless
USB key into the box of used USB keys. The election staff
continuously recycled the USB sticks with new tokens, so
that they could be reused by the next voter.

During the time leading up to the election, we formalized
the ballot in terms of who are the candidates, how many
votes can be cast, etc. This formal description was then
used to generate the Twelf signature and the user interface,
which displayed for example, radio check boxes next to
the candidate names. The text fields displayed along with
the radio boxes is also taken from the formal specification.
The generated Twelf signature is public and was studied,
checked, and analyzed before the election.

The physical evidence produced by the voting machine,
inspected by a third party scanning machine and cast by the
voter was an LF object that reflected step by step what the
voting machine has done. For elections with only finitely
many valid ballots, one could imagine that the physical
evidence contains abbreviations of the form votea or voteb,
but this should be seen as a special case for a very simple
election.

Figure 6 depicts a Pdf417 barcode that contains the full
expanded information trace fragment, necessary to count a
ballot

[L:val] [X:val] [Y:val]
[r:eval (fold (! L) (pair z z)

([x5:val] [x6:val]
case (! x5) (pair (s (fst (! x6)))

(snd (! x6)))
(pair (fst (! x6)) (s (snd (! x6))))))

(pair* X Y)]
evfold2 ev! r (evcasea ev! (evpair (evsucc
(evfst ev!)) (evsnd ev!))).

The leading λ-abstractions of this trace fragment abstract
away all personal identifying information from a ballot. It
enables us to treat ballots of the same kind uniformly. That

we can use this trick here is in fact a deep consequence of
the Compositionality Theorem 5.2.

The election was a two day election, which confronted us
with the question of what to do with the electronic voting
machine over night. Because of the technology employed
here, we could afford the machine running over night,
without human observation. Following the ideas outlined
in the paper, we took the sealed ballot box containing the
partial computation trace and stored it over night at a safe
location because we were sure that when reconstructing the
trace, we would notice if the election was tempered with.

At the end of the second day. We terminated the electronic
voting software presenting us with the result Twelf target
type (here shortened to only 6 votes):

eval (fold (! (cons* b* (! (cons* a*
(! (cons* b* (! (cons* b* (! (cons* a*
(! (cons* a* (! nil*)))))))))))))
(pair z z)
([x:val] [x5:val]
case (! x) (pair (s (fst (! x5)))

(snd (! x5)))
(pair (fst (! x5))

(s (snd (! x5))))))
(pair* (s* (s* (s* z*)))

(s* (s* (s* z*))))

After scanning all of the ballots, we pasted them together
into one large LF object, reconstructed its type using Twelf,
and checked the two types for equivalence modulo βη-
conversion. The trace emitting computation technique cer-
tified the outcome of the election.

If one uses a unary definition of natural numbers as in this
example, it is as difficult to read out the result of an election
from the type returned as it would have been to hand-count
the votes in the first place. This problem can be easily fixed
in Twelf by using a binary, or decimal representation of
numbers in the definition of expressions. However, such
a choice would have complicated this presentation, the
inspection and analysis of the Twelf signature.

VII. ANALYSIS

During this election Iben Lewinsky and Mikkel Sesøe
Sørensen have conducted a rigorous empirical study [LS08].
Using a mixed methods approach, three different groups
have been surveyed and the results show that the technical
implementation is of less importance to the immediate trust
relations than factors, such as system usability and media
attention. Also, the study reveals a wide readiness for the
adoption of e-voting systems in Denmark, as well as a high
apparent level of trust in the capabilities and security of such
systems; the former attributable to an inherent high level of
trust in Danish authorities. We have therefore concluded that
the empirical studies have a significant bias that is difficult
to quantify. To alleviate this problem we plan to supplement

the empirical studies by theoretical work using modern trust
models.

VIII. SCALABILITY

An election is a process that consists of many parts,
where casting a vote is just one among many. Although
this paper focuses on this particular part, we speculate that
trace emitting computations scale to the other parts as well.
Consider for examples the summing up results of individual
voting machines.

Let D1 and D2 be the evidence for the evaluation of
apply dre L1 ↪→ w1 ♦ D1 and apply dre L2 ↪→ w2 ♦
D2. In order to compute the sum of w1 and w2, we need to
ensure that this computation is being executed on a machine.
Based on the definition of addition, which we omit here, the
new trace D can be constructed from traces D1 and D2. As
above, this construction can be validated ahead of time, and
is purely mechanical.

Another example is the computation of which party gets
how many seats in parliament. And again, after extending
the language displayed in Figure 3 by a case construct
for natural numbers, we can encode the algorithm that
converts tallies into seats. And again we need to use two
machines. One which does the computation, and the other
that constructs the trace for it. Eventually, one obtains both,
and under the independence assumption, problems with the
computation cannot remain unnoticed.

IX. CONCLUSION

We have proposed a technique of trace emitting com-
putations, with which illustrate how to generate trust in
electronic voting software. The diamond of trust illustrates
just how trust is generated: The electronic voting machine
executes computation and provides a trace whose individual
parts are either inspected by the voter (to make sure that it
corresponds to the voters intent) or automatically generated
(by an open, verified, and formalized procedure). Before
the result of an election is final, a small trusted piece of
software checks that the trace is in fact a valid trace of the
computation of the conjectured result. Only if this test is
positive, the election is validated.

In future work, we will develop modern trust models,
study the nature and implication of the assumption that the
voting and trace machines are assumed to be “independent”.
In particular, we will study the prevention of covet informa-
tion (as part of the physical evidence) to flow between the
two machines.

Acknowledgments: I would like to thank the two stu-
dents who implemented a prototype of the electronic voting
machine, Erik Cederstrand and Kenneth Sjøholm and the two
other students who helped me conduct a real election with
this technology, Iben Lewinsky and Mikkel Sesøe Sørensen.
I also want to thank the anonymous reviewers for their
valuable suggestions.

REFERENCES

[AMSV02] A. Appel, N. Michael, A. Stump, and R. Virga. A
trustworthy proof checker. Technical Report TR-
647-02, Department of Computer Science, Princeton
University, 2002.

[CHF07] Joseph A. Calandrino, J. Alex Halderman, and Ed-
ward W. Felten. Machine-assisted election auditing. In
EVT’07: Proceedings of the USENIX/Accurate Elec-
tronic Voting Technology Workshop, Berkeley, CA,
USA, 2007. USENIX Association.

[Eve07] Sarah P. Everett. The Usability of Electronic Voting
Machines and How Votes Can Be Changed Without
Detection. PhD thesis, Rice University, 2007.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin.
A framework for defining logics. Journal of the
Association for Computing Machinery, 40(1):143–184,
January 1993.

[LS08] Iben Lewinsky and Mikkel Selsøe Sørensen. Trust
in e-voting systems. Master’s thesis, IT University
of Copenhagen, Department of Computer Science,
Copenhagen University, 2008.

[Nec97] George C. Necula. Proof-carrying code. In Neil D.
Jones, editor, Conference Record of the 24th Sym-
posium on Principles of Programming Languages
(POPL’97), pages 106–119, Paris, France, January
1997. ACM Press.

[PS99] Frank Pfenning and Carsten Schürmann. System
description: Twelf — a meta-logical framework for de-
ductive systems. In H. Ganzinger, editor, Proceedings
of the 16th International Conference on Automated
Deduction (CADE-16), pages 202–206, Trento, Italy,
July 1999. Springer-Verlag LNAI 1632.

[RS07] Ronald L. Rivest and Warren D. Smith. Three voting
protocols: Threeballot, vav, and twin. In EVT’07:
Proceedings of the USENIX/Accurate Electronic Vot-
ing Technology on USENIX/Accurate Electronic Voting
Technology Workshop, pages 16–16, Berkeley, CA,
USA, 2007. USENIX Association.

[SBR01] David Jefferson Shuki Bruck and Ronald Rivest. A
modular voting architecture (”frogs”). Technical Re-
port VTP Working Paper #3, Caltech/MIT Voting
Technology Project, August 2001.

