
Certifying Voting Protocols

Carsten Schürmann

DemTech
IT University of Copenhagen

May 28, 2013

Kofi Annan Report 2012

I 196 countries in the world

I 185 of those held national elections
since 2000

I Active construction of Electoral
Management Bodies

I often using technology

International Evoting Map

Information Technology and the Electoral Process

Principle

The goal of designing election processes must
always be to achieve credible elections that are
acceptable. Information technology should only be
used in the electoral process, if it can be
satisfactorily argued that it it preserves or creates
trust in the electoral process.

Trust

I Voter value and trust system
I Trust in bureaucracy
I Trust in public control
I Trust in judges

I Voting culture and rituals

I Formal verification

I Voter verifiable paper trails

I Auditing procedures and policies

I Classification: Administrative, cultural, mechanical,
procedural, cryptographic

Cyber Security Challenges

I Selected Administrative Challenges
I Voter registration and polling stations
I Election day
I Out of country voting
I Tabulation
I Transmission of results
I Tracking and solving disputes

I Selected Technological Challenges
I Pervasive uses of complex ICT
I Attack surfaces
I Software Independence
I End to end verifiability
I Programming language abstractions

I Selected Legal Challenges
I Policy and law

I Selected Communication Challenges
I Education and publication

In This Talk: Certifying Voting Protocols

I Programming Language Abstractions

I Tabulation

I Tracking and solving disputes

1 Single Transferable Vote (STV)

2 A Logical Specification of Single Transferable Vote

3 Summary

Electoral Law

STV Ballot Form
Rank any number of candidates

in order of preference.

Alice

Bob

Charlie

Dave

1
2

3

Outline of STV Protocol:

0. Calculate the quota of votes.

1. Tally each ballot for its highest pref
that is neither elected nor defeated.

I Surplus votes go to next pref.

2. After all votes have been tallied:
I If there are more cands. than seats,

eliminate cand. with the fewest votes;
transfer his votes and re-tally (go to 1).

I If there are more seats than cands.,
then all remaining cands. are elected.

How and Who Translates this into Software?

I It’s just pseudo code
What operational semantics?

I It’s a specification
How do we know that the specification is ok?

What democratic properties shall the electoral system have?

I It is legally binding
Can we fix errors in the protocol?

How do we we resolve inconsistencies?
How do we we fill holes?

Current Approach to Programming Voting Protocols

Informal Specification

Implementation

Legal Text

Java, C, etc.

H
um

an T
ranslation

1. Translate legal text to imperative source code.

I How to trust this?

2. Certify that code meets legal specification.
I Very hard!

Is this approach really trustworthy?

Current Approach to Programming Voting Protocols

Informal Specification

Implementation

Legal Text

Java, C, etc.

H
um

an T
ranslation

1. Translate legal text to imperative source code.
I How to trust this?

2. Certify that code meets legal specification.
I Very hard!

Is this approach really trustworthy?

Current Approach to Programming Voting Protocols

Informal Specification

Implementation

Legal Text

Java, C, etc.

H
um

an T
ranslation

1. Translate legal text to imperative source code.
I How to trust this?

2. Certify that code meets legal specification.
I Very hard!

Is this approach really trustworthy?

Current Approach to Programming Voting Protocols

Informal Specification

Implementation

Legal Text

Java, C, etc.

H
um

an T
ranslation

1. Translate legal text to imperative source code.
I How to trust this?

2. Certify that code meets legal specification.
I Very hard!

Is this approach really trustworthy?

Key Idea

Formal logic, particularly linear logic, is well-suited
to the trustworthy specification and implementation
of voting protocols.

(joined work with Henry deYoung, CMU)

Certifying Voting Protocols

Informal Specification

Implementation

Legal Text

Java, C, etc.

Linear Logical
Formulas

Formal
Specification

1. Translate legal text to logical formulas.
I Algorithms at high level of abstraction

I Much smaller gap from legal language!

2. Transliterate formulas to a logic program.
I Formulas = source code

I No further translation necessary!

Certifying Voting Protocols

Informal Specification

Implementation

Legal Text

Java, C, etc.

Linear Logical
Formulas

Formal
Specification

1. Translate legal text to logical formulas.
I Algorithms at high level of abstraction
I Much smaller gap from legal language!

2. Transliterate formulas to a logic program.
I Formulas = source code

I No further translation necessary!

Certifying Voting Protocols

Informal Specification

Implementation

Legal Text

Java, C, etc.

Linear Logical
Formulas

Formal
Specification

1. Translate legal text to logical formulas.
I Algorithms at high level of abstraction
I Much smaller gap from legal language!

2. Transliterate formulas to a logic program.
I Formulas = source code

I No further translation necessary!

Certifying Voting Protocols

Informal Specification

Implementation

Legal Text

Linear Logical
Formulas

Formal
Specification

1. Translate legal text to logical formulas.
I Algorithms at high level of abstraction
I Much smaller gap from legal language!

2. Transliterate formulas to a logic program.
I Formulas = source code
I No further translation necessary!

Certifying Voting Protocols

Informal Specification

Implementation

Legal Text

Linear Logical
Formulas

Formal
Specification

What must still be trusted?
1. Translation to logical formulas

I Much smaller gap from legal language
— more trustworthy!

2. Correctness of logic programming engine
I Equal to or easier than trusting compiler
I Proof witnesses as certificates
I Certificates as audit trails
I Use a simpler proof checker to validate

proof objects

Certifying Voting Protocols

Informal Specification

Implementation

Legal Text

Linear Logical
Formulas

Formal
Specification

What must still be trusted?
1. Translation to logical formulas

I Much smaller gap from legal language
— more trustworthy!

2. Correctness of logic programming engine
I Equal to or easier than trusting compiler
I Proof witnesses as certificates
I Certificates as audit trails
I Use a simpler proof checker to validate

proof objects

Single Transferable Vote on a Single Slide

begin/1 :
begin(S,H,U) �
!(Q = U/(S+1) + 1)

({!quota(Q) �
tally-votes(S,H,U)}

tally/1 :
tally-votes(S,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 < Q)

({counted-ballot(C , L) �
hopeful(C ,N+1) �
tally-votes(S,H,U−1)}

tally/2 :
tally-votes(S,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 ≥ Q) �
!(S ≥ 1)

({counted-ballot(C , L) �
!elected(C) �
tally-votes(S−1,H−1,U−1)}

tally/3 :
tally-votes(S,H,U) �
uncounted-ballot(C , [C ′ | L]) �
(!elected(C) � !defeated(C))

({uncounted-ballot(C ′, L) �
tally-votes(S,H,U)}

tally/4 :
tally-votes(S,H,U) �
uncounted-ballot(C , []) �
(!elected(C) � !defeated(C))

({tally-votes(S,H,U−1)}

tally/5 :
tally-votes(S,H, 0) �
!(S < H)

({defeat-min(S,H, 0)}

tally/6 :
tally-votes(S,H, 0) �
!(S ≥ H)

({!elect-all}

defeat-min/1 :
defeat-min(S,H,M) �
hopeful(C ,N)

({minimum(C ,N) �
defeat-min(S,H−1,M+1)}

defeat-min/2 :
defeat-min(S, 0,M)

({defeat-min′(S, 0,M)}

defeat-min′/1 :
defeat-min′(S,H,M) �
minimum(C1,N1) �
minimum(C2,N2) �
!(N1 ≤ N2)

({minimum(C1,N1) �
hopeful(C2,N2) �
defeat-min′(S,H+1,M−1)}

defeat-min′/2 :
defeat-min′(S,H, 1) �
minimum(C ,N)

({!defeated(C) �
transfer(C ,N, S,H, 0)}

transfer/1 :
transfer(C ,N, S,H,U) �
counted-ballot(C , L)

({uncounted-ballot(C , L) �
transfer(C ,N−1, S,H,U+1)}

transfer/2 :
transfer(C , 0, S,H,U)

({tally-votes(S,H,U)}

elect-all/1 :
!elect-all �
hopeful(C ,N)

({!elected(C)}

Single Transferable Vote on a Single Slide

begin/1 :
begin(S,H,U) �
!(Q = U/(S+1) + 1)

({!quota(Q) �
tally-votes(S,H,U)}

tally/1 :
tally-votes(S,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 < Q)

({counted-ballot(C , L) �
hopeful(C ,N+1) �
tally-votes(S,H,U−1)}

tally/2 :
tally-votes(S,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 ≥ Q) �
!(S ≥ 1)

({counted-ballot(C , L) �
!elected(C) �
tally-votes(S−1,H−1,U−1)}

tally/3 :
tally-votes(S,H,U) �
uncounted-ballot(C , [C ′ | L]) �
(!elected(C) � !defeated(C))

({uncounted-ballot(C ′, L) �
tally-votes(S,H,U)}

tally/4 :
tally-votes(S,H,U) �
uncounted-ballot(C , []) �
(!elected(C) � !defeated(C))

({tally-votes(S,H,U−1)}

tally/5 :
tally-votes(S,H, 0) �
!(S < H)

({defeat-min(S,H, 0)}

tally/6 :
tally-votes(S,H, 0) �
!(S ≥ H)

({!elect-all}

defeat-min/1 :
defeat-min(S,H,M) �
hopeful(C ,N)

({minimum(C ,N) �
defeat-min(S,H−1,M+1)}

defeat-min/2 :
defeat-min(S, 0,M)

({defeat-min′(S, 0,M)}

defeat-min′/1 :
defeat-min′(S,H,M) �
minimum(C1,N1) �
minimum(C2,N2) �
!(N1 ≤ N2)

({minimum(C1,N1) �
hopeful(C2,N2) �
defeat-min′(S,H+1,M−1)}

defeat-min′/2 :
defeat-min′(S,H, 1) �
minimum(C ,N)

({!defeated(C) �
transfer(C ,N, S,H, 0)}

transfer/1 :
transfer(C ,N, S,H,U) �
counted-ballot(C , L)

({uncounted-ballot(C , L) �
transfer(C ,N−1, S,H,U+1)}

transfer/2 :
transfer(C , 0, S,H,U)

({tally-votes(S,H,U)}

elect-all/1 :
!elect-all �
hopeful(C ,N)

({!elected(C)}

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

Conclusion

Conclusion

I Elections are safety critical systems

I Decisions regarding trust are never only technical
I Even experts get it wrong

I CADE-STV implements not STV but majority rule
I Over 15 years in use, designed by mathematicians and logicians
I Used for other professional meetings as well.

I Future Work
I Epistemic connectives to model identiy and secrecy.

Thank you.

	Introduction
	Single Transferable Vote (STV)
	A Logical Specification of Single Transferable Vote
	Summary

