
Certifying Voting Protocols

Carsten Schürmann

IT University of Copenhagen

(technical part joined work with Henry deYoung)

ARSEC 2013

June 9, 2013

Kofi Annan Report 2012

I 196 countries in the world

I 185 of those held national elections
since 2000

I Active construction of Electoral
Management Bodies

I often using technology

International Evoting Map

Information Technology and the Electoral Process

Principle

The goal of designing election processes must
always be to achieve credible elections that are
acceptable. Information technology should only be
used in the electoral process, if it can be
satisfactorily argued that it it preserves or creates
trust in the electoral process.

Trust

I Voter value and trust system
I Trust in bureaucracy
I Trust in public control
I Trust in judges

I Voting culture and rituals

I Formal verification

I Voter verifiable paper trails

I Auditing procedures and policies

I Classification: Administrative, cultural, mechanical,
procedural, cryptographic

Cyber Security Challenges

I Selected Administrative Challenges
I Voter registration and polling stations
I Election day
I Out of country voting
I Tabulation
I Transmission of results
I Tracking and solving disputes

I Selected Technological Challenges
I Integrity ⇔ Secrecy
I Attack surfaces
I Software Independence
I End to end verifiability
I Programming language abstractions

I Selected Legal Challenges
I Policy and law

I Selected Communication Challenges
I Education and publication

Cyber Security Challenges

I Selected Administrative Challenges
I Voter registration and polling stations
I Election day
I Out of country voting
I Tabulation
I Transmission of results
I Tracking and solving disputes

I Selected Technological Challenges
I Integrity ⇔ Secrecy
I Attack surfaces
I Software Independence
I End to end verifiability
I Programming language abstractions

I Selected Legal Challenges
I Policy and law

I Selected Communication Challenges
I Education and publication

In This Talk: Certifying Voting Protocols

1 Case Study: Denmark

2 A Brief Introduction to Linear Logic

3 A Linear Logical Specification of Single Transferable Vote

Case Study: Denmark

A Bird’s Eye View on the Electoral Process

Managing Trust (Parliamentary Election)

Technology Requires Law Changes... but It Ain’t Easy

“The use of electronic voting machines in
parliamentary elections is unconstitutional as
long as it is not possible for citizens to ex-
ercise their right to inspect and verify the
essential steps of the election.

[German Supreme Court March 3rd, 2009]

Denmark

Events

I Nov’12 Bill published

I Dec’12 Experts comment

I Jan’13 Ministry publishes rebuttal

I Feb’13 First hearing in parliament

I Mar’13 Expert hearing in parliament

I Apr’13 Majority in parliament against

I May’13 Oppostion proposes
alternative

I to be continued

Denmark

Events

I Nov’12 Bill published

I Dec’12 Experts comment

I Jan’13 Ministry publishes rebuttal

I Feb’13 First hearing in parliament

I Mar’13 Expert hearing in parliament

I Apr’13 Majority in parliament against

I May’13 Oppostion proposes
alternative

I to be continued

Tabulation Technology Denmark (since 1984)

Informal Specification

Implementation

Legal Text

Java, C, etc.

H
um

an T
ranslation

1. Translate legal text to imperative source code.

I How to trust this?

2. Certify that code meets legal specification.
I Very hard!

Is this approach really trustworthy?

Tabulation Technology Denmark (since 1984)

Informal Specification

Implementation

Legal Text

Java, C, etc.

H
um

an T
ranslation

1. Translate legal text to imperative source code.
I How to trust this?

2. Certify that code meets legal specification.
I Very hard!

Is this approach really trustworthy?

Tabulation Technology Denmark (since 1984)

Informal Specification

Implementation

Legal Text

Java, C, etc.

H
um

an T
ranslation

1. Translate legal text to imperative source code.
I How to trust this?

2. Certify that code meets legal specification.
I Very hard!

Is this approach really trustworthy?

Tabulation Technology Denmark (since 1984)

Informal Specification

Implementation

Legal Text

Java, C, etc.

H
um

an T
ranslation

1. Translate legal text to imperative source code.
I How to trust this?

2. Certify that code meets legal specification.
I Very hard!

Is this approach really trustworthy?

Key Idea

Formal logic, particularly linear logic, is well-suited
to the trustworthy specification and implementation
of voting protocols.

Our Approach to Electronic Elections

Informal Specification

Implementation

Legal Text

Java, C, etc.

Linear Logical
Formulas

Formal
Specification

1. Translate legal text to logical formulas.
I Algorithms at high level of abstraction

I Much smaller gap from legal language!

2. Transliterate formulas to a logic program.
I Formulas = source code

I No further translation necessary!

Our Approach to Electronic Elections

Informal Specification

Implementation

Legal Text

Java, C, etc.

Linear Logical
Formulas

Formal
Specification

1. Translate legal text to logical formulas.
I Algorithms at high level of abstraction
I Much smaller gap from legal language!

2. Transliterate formulas to a logic program.
I Formulas = source code

I No further translation necessary!

Our Approach to Electronic Elections

Informal Specification

Implementation

Legal Text

Java, C, etc.

Linear Logical
Formulas

Formal
Specification

1. Translate legal text to logical formulas.
I Algorithms at high level of abstraction
I Much smaller gap from legal language!

2. Transliterate formulas to a logic program.
I Formulas = source code

I No further translation necessary!

Our Approach to Electronic Elections

Informal Specification

Implementation

Legal Text

Linear Logical
Formulas

Formal
Specification

1. Translate legal text to logical formulas.
I Algorithms at high level of abstraction
I Much smaller gap from legal language!

2. Transliterate formulas to a logic program.
I Formulas = source code
I No further translation necessary!

Our Approach to Electronic Elections

Informal Specification

Implementation

Legal Text

Linear Logical
Formulas

Formal
Specification

What must still be trusted?
1. Translation to logical formulas

I Much smaller gap from legal language
— more trustworthy!

2. Correctness of logic programming engine
I Equal to or easier than trusting compiler
I Proof witnesses are audit trails for free.
I Use a simpler proof checker to validate

proof objects.

Our Approach to Electronic Elections

Informal Specification

Implementation

Legal Text

Linear Logical
Formulas

Formal
Specification

What must still be trusted?
1. Translation to logical formulas

I Much smaller gap from legal language
— more trustworthy!

2. Correctness of logic programming engine
I Equal to or easier than trusting compiler
I Proof witnesses are audit trails for free.
I Use a simpler proof checker to validate

proof objects.

Summary

Contributions:
I Full linear logical specifications of:

I Single transferable vote (STV)

I Operational interpretation as Celf logic programs

Non-contributions:
I Focus is on verified elections, not voter-verifiable elections.

I Complementary: E2E techniques detect errors at run time;
verified software minimizes run-time errors.

I Only operational correctness, not security properties
I Linear logical voting specs should be readily amenable to

meta-reasoning [Reed ’09] about security; left to future work.

Summary

Contributions:
I Full linear logical specifications of:

I Single transferable vote (STV)

I Operational interpretation as Celf logic programs

Non-contributions:
I Focus is on verified elections, not voter-verifiable elections.

I Complementary: E2E techniques detect errors at run time;
verified software minimizes run-time errors.

I Only operational correctness, not security properties
I Linear logical voting specs should be readily amenable to

meta-reasoning [Reed ’09] about security; left to future work.

A Brief Introduction to
Linear Logic

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic

“Truth is a consumable resource.”

I Assumptions must be used
exactly once.

I The logic of food.

Let’s specify a voter check-in process:

I Consume an authorization card to prevent multiple check-ins.

I Use linear implication, A({B}.
I A({B} ≈ “consume resource A to produce B.”

voting-auth-card ({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be used
exactly once.

I The logic of food.

Let’s specify a voter check-in process:

I Consume an authorization card to prevent multiple check-ins.

I Use linear implication, A({B}.
I A({B} ≈ “consume resource A to produce B.”

voting-auth-card ({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be used
exactly once.

I The logic of food.

Let’s specify a voter check-in process:

I Consume an authorization card to prevent multiple check-ins.

I Use linear implication, A({B}.
I A({B} ≈ “consume resource A to produce B.”

voting-auth-card ({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be used
exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:

I Consume an authorization card to prevent multiple check-ins.

I Use linear implication, A({B}.
I A({B} ≈ “consume resource A to produce B.”

voting-auth-card ({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be used
exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:

I Consume an authorization card to prevent multiple check-ins.

I Use linear implication, A({B}.
I A({B} ≈ “consume resource A to produce B.”

voting-auth-card ({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be used
exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:

I Consume an authorization card to prevent multiple check-ins.
I Use linear implication, A({B}.

I A({B} ≈ “consume resource A to produce B.”

voting-auth-card ({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be used
exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:

I Consume an authorization card to prevent multiple check-ins.
I Use linear implication, A({B}.

I A({B} ≈ “consume resource A to produce B.”

voting-auth-card ({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be used
exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:

I Consume an authorization card to prevent multiple check-ins.
I Use linear implication, A({B}.

I A({B} ≈ “consume resource A to produce B.”

voting-auth-card ({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be used
exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:

I Consume an authorization card to prevent multiple check-ins.
I Use linear implication, A({B}.

I A({B} ≈ “consume resource A to produce B.”

voting-auth-card ({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be used
exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:

I Consume an authorization card to prevent multiple check-ins.
I Use linear implication, A({B}.

I A({B} ≈ “consume resource A to produce B.”

voting-auth-card ({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

“May I please see your identification?”

voting-auth-card “and photo ID” ({blank-ballot}
“If I give an auth. card and a photo ID, then I get a ballot.”

Problem: How to express a pair of resources?

Solution: Use simultaneous conjunction, A � B.
I A � B ≈ “both resources A and B”

Problem: Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

Solution: Use the unrestricted modality, !A.
I !A ≈ “a version of A that is never consumed.”

“May I please see your identification?”

voting-auth-card “and photo ID” ({blank-ballot}
“If I give an auth. card and a photo ID, then I get a ballot.”

Problem: How to express a pair of resources?

Solution: Use simultaneous conjunction, A � B.
I A � B ≈ “both resources A and B”

Problem: Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

Solution: Use the unrestricted modality, !A.
I !A ≈ “a version of A that is never consumed.”

“May I please see your identification?”

voting-auth-card � photo-ID ({blank-ballot}
“If I give an auth. card and a photo ID, then I get a ballot.”

Problem: How to express a pair of resources?

Solution: Use simultaneous conjunction, A � B.
I A � B ≈ “both resources A and B”

Problem: Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

Solution: Use the unrestricted modality, !A.
I !A ≈ “a version of A that is never consumed.”

“May I please see your identification?”

voting-auth-card � photo-ID ({blank-ballot}
“If I give an auth. card and a photo ID, then I get a ballot.”

Problem: How to express a pair of resources?

Solution: Use simultaneous conjunction, A � B.
I A � B ≈ “both resources A and B”

Problem: Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

Solution: Use the unrestricted modality, !A.
I !A ≈ “a version of A that is never consumed.”

“May I please see your identification?”

voting-auth-card � photo-ID ({blank-ballot}
“If I give an auth. card and a photo ID, then I get a ballot.”

Problem: How to express a pair of resources?

Solution: Use simultaneous conjunction, A � B.
I A � B ≈ “both resources A and B”

Problem: Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

Solution: Use the unrestricted modality, !A.
I !A ≈ “a version of A that is never consumed.”

“May I please see your identification?”

voting-auth-card � !photo-ID ({blank-ballot}
“If I give an auth. card and show a photo ID, then I get a ballot.”

Problem: How to express a pair of resources?

Solution: Use simultaneous conjunction, A � B.
I A � B ≈ “both resources A and B”

Problem: Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

Solution: Use the unrestricted modality, !A.
I !A ≈ “a version of A that is never consumed.”

Ensuring that the Card and ID Match

voting-auth-card � !photo-ID ({blank-ballot}
“If I give an auth. card and show a photo ID, then I get a ballot.”

Problem: Doesn’t ensure that auth. card and photo ID match.

Solution: Use universal quantification, ∀x .A.

I Quantified variables are not resources.

Problem: Doesn’t ensure that the auth. card and ID are mine.

Future Work: Use possession modality [Garg+ ’06], K has A.
I Location and secrecy of information?

Homomorphic encryption?

Ensuring that the Card and ID Match

voting-auth-card � !photo-ID ({blank-ballot}
“If I give an auth. card and show a photo ID, then I get a ballot.”

Problem: Doesn’t ensure that auth. card and photo ID match.

Solution: Use universal quantification, ∀x .A.

I Quantified variables are not resources.

Problem: Doesn’t ensure that the auth. card and ID are mine.

Future Work: Use possession modality [Garg+ ’06], K has A.
I Location and secrecy of information?

Homomorphic encryption?

Ensuring that the Card and ID Match

∀v . voting-auth-card(v) � !photo-ID(v) ({blank-ballot}
“If I give an auth. card and show a matching ID, then I get a ballot.”

Problem: Doesn’t ensure that auth. card and photo ID match.

Solution: Use universal quantification, ∀x .A.

I Quantified variables are not resources.

Problem: Doesn’t ensure that the auth. card and ID are mine.

Future Work: Use possession modality [Garg+ ’06], K has A.
I Location and secrecy of information?

Homomorphic encryption?

Ensuring that the Card and ID Match

voting-auth-card(V) � !photo-ID(V) ({blank-ballot}
“If I give an auth. card and show a matching ID, then I get a ballot.”

Problem: Doesn’t ensure that auth. card and photo ID match.

Solution: Use universal quantification, ∀x .A.

I Quantified variables are not resources.

Problem: Doesn’t ensure that the auth. card and ID are mine.

Future Work: Use possession modality [Garg+ ’06], K has A.
I Location and secrecy of information?

Homomorphic encryption?

Ensuring that the Card and ID Match

voting-auth-card(V) � !photo-ID(V) ({blank-ballot}
“If I give an auth. card and show a matching ID, then I get a ballot.”

Problem: Doesn’t ensure that auth. card and photo ID match.

Solution: Use universal quantification, ∀x .A.

I Quantified variables are not resources.

Problem: Doesn’t ensure that the auth. card and ID are mine.

Future Work: Use possession modality [Garg+ ’06], K has A.
I Location and secrecy of information?

Homomorphic encryption?

Ensuring that the Card and ID Match

voting-auth-card(V) � !photo-ID(V) ({blank-ballot}
“If I give an auth. card and show a matching ID, then I get a ballot.”

Problem: Doesn’t ensure that auth. card and photo ID match.

Solution: Use universal quantification, ∀x .A.

I Quantified variables are not resources.

Problem: Doesn’t ensure that the auth. card and ID are mine.

Future Work: Use possession modality [Garg+ ’06], K has A.
I Location and secrecy of information?

Homomorphic encryption?

A Linear Logical Specification

of Single Transferable Vote

Single Transferable Vote (STV)

STV Ballot Form
Rank any number of candidates

in order of preference.

Alice

Bob

Charlie

Dave

1
2

3

Outline of STV Protocol:

0. Calculate the quota of votes.

1. Tally each ballot for its highest pref
that is neither elected nor defeated.

I Surplus votes go to next pref.

2. After all votes have been tallied:
I If there are more cands. than seats,

eliminate cand. with the fewest votes;
transfer his votes and re-tally (go to 1).

I If there are more seats than cands.,
then all remaining cands. are elected.

Used in Australia and Ireland national elections

Single Transferable Vote on a Single Slide

begin/1 :
begin(S,H,U) �
!(Q = U/(S+1) + 1)

({!quota(Q) �
tally-votes(S,H,U)}

tally/1 :
tally-votes(S,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 < Q)

({counted-ballot(C , L) �
hopeful(C ,N+1) �
tally-votes(S,H,U−1)}

tally/2 :
tally-votes(S,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 ≥ Q) �
!(S ≥ 1)

({counted-ballot(C , L) �
!elected(C) �
tally-votes(S−1,H−1,U−1)}

tally/3 :
tally-votes(S,H,U) �
uncounted-ballot(C , [C ′ | L]) �
(!elected(C) � !defeated(C))

({uncounted-ballot(C ′, L) �
tally-votes(S,H,U)}

tally/4 :
tally-votes(S,H,U) �
uncounted-ballot(C , []) �
(!elected(C) � !defeated(C))

({tally-votes(S,H,U−1)}

tally/5 :
tally-votes(S,H, 0) �
!(S < H)

({defeat-min(S,H, 0)}

tally/6 :
tally-votes(S,H, 0) �
!(S ≥ H)

({!elect-all}

defeat-min/1 :
defeat-min(S,H,M) �
hopeful(C ,N)

({minimum(C ,N) �
defeat-min(S,H−1,M+1)}

defeat-min/2 :
defeat-min(S, 0,M)

({defeat-min′(S, 0,M)}

defeat-min′/1 :
defeat-min′(S,H,M) �
minimum(C1,N1) �
minimum(C2,N2) �
!(N1 ≤ N2)

({minimum(C1,N1) �
hopeful(C2,N2) �
defeat-min′(S,H+1,M−1)}

defeat-min′/2 :
defeat-min′(S,H, 1) �
minimum(C ,N)

({!defeated(C) �
transfer(C ,N, S,H, 0)}

transfer/1 :
transfer(C ,N, S,H,U) �
counted-ballot(C , L)

({uncounted-ballot(C , L) �
transfer(C ,N−1, S,H,U+1)}

transfer/2 :
transfer(C , 0, S,H,U)

({tally-votes(S,H,U)}

[elect-all/1 :
!elect-all �
hopeful(C ,N)

({!elected(C)}

Single Transferable Vote on a Single Slide

begin/1 :
begin(S,H,U) �
!(Q = U/(S+1) + 1)

({!quota(Q) �
tally-votes(S,H,U)}

tally/1 :
tally-votes(S,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 < Q)

({counted-ballot(C , L) �
hopeful(C ,N+1) �
tally-votes(S,H,U−1)}

tally/2 :
tally-votes(S,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 ≥ Q) �
!(S ≥ 1)

({counted-ballot(C , L) �
!elected(C) �
tally-votes(S−1,H−1,U−1)}

tally/3 :
tally-votes(S,H,U) �
uncounted-ballot(C , [C ′ | L]) �
(!elected(C) � !defeated(C))

({uncounted-ballot(C ′, L) �
tally-votes(S,H,U)}

tally/4 :
tally-votes(S,H,U) �
uncounted-ballot(C , []) �
(!elected(C) � !defeated(C))

({tally-votes(S,H,U−1)}

tally/5 :
tally-votes(S,H, 0) �
!(S < H)

({defeat-min(S,H, 0)}

tally/6 :
tally-votes(S,H, 0) �
!(S ≥ H)

({!elect-all}

defeat-min/1 :
defeat-min(S,H,M) �
hopeful(C ,N)

({minimum(C ,N) �
defeat-min(S,H−1,M+1)}

defeat-min/2 :
defeat-min(S, 0,M)

({defeat-min′(S, 0,M)}

defeat-min′/1 :
defeat-min′(S,H,M) �
minimum(C1,N1) �
minimum(C2,N2) �
!(N1 ≤ N2)

({minimum(C1,N1) �
hopeful(C2,N2) �
defeat-min′(S,H+1,M−1)}

defeat-min′/2 :
defeat-min′(S,H, 1) �
minimum(C ,N)

({!defeated(C) �
transfer(C ,N, S,H, 0)}

transfer/1 :
transfer(C ,N, S,H,U) �
counted-ballot(C , L)

({uncounted-ballot(C , L) �
transfer(C ,N−1, S,H,U+1)}

transfer/2 :
transfer(C , 0, S,H,U)

({tally-votes(S,H,U)}

[elect-all/1 :
!elect-all �
hopeful(C ,N)

({!elected(C)}

Single Transferable Vote on a Single Slide

begin/1 :
begin(S,H,U) �
!(Q = U/(S+1) + 1)

({!quota(Q) �
tally-votes(S,H,U)}

tally/1 :
tally-votes(S,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 < Q)

({counted-ballot(C , L) �
hopeful(C ,N+1) �
tally-votes(S,H,U−1)}

tally/2 :
tally-votes(S,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 ≥ Q) �
!(S ≥ 1)

({counted-ballot(C , L) �
!elected(C) �
tally-votes(S−1,H−1,U−1)}

tally/3 :
tally-votes(S,H,U) �
uncounted-ballot(C , [C ′ | L]) �
(!elected(C) � !defeated(C))

({uncounted-ballot(C ′, L) �
tally-votes(S,H,U)}

tally/4 :
tally-votes(S,H,U) �
uncounted-ballot(C , []) �
(!elected(C) � !defeated(C))

({tally-votes(S,H,U−1)}

tally/5 :
tally-votes(S,H, 0) �
!(S < H)

({defeat-min(S,H, 0)}

tally/6 :
tally-votes(S,H, 0) �
!(S ≥ H)

({!elect-all}

defeat-min/1 :
defeat-min(S,H,M) �
hopeful(C ,N)

({minimum(C ,N) �
defeat-min(S,H−1,M+1)}

defeat-min/2 :
defeat-min(S, 0,M)

({defeat-min′(S, 0,M)}

defeat-min′/1 :
defeat-min′(S,H,M) �
minimum(C1,N1) �
minimum(C2,N2) �
!(N1 ≤ N2)

({minimum(C1,N1) �
hopeful(C2,N2) �
defeat-min′(S,H+1,M−1)}

defeat-min′/2 :
defeat-min′(S,H, 1) �
minimum(C ,N)

({!defeated(C) �
transfer(C ,N, S,H, 0)}

transfer/1 :
transfer(C ,N, S,H,U) �
counted-ballot(C , L)

({uncounted-ballot(C , L) �
transfer(C ,N−1, S,H,U+1)}

transfer/2 :
transfer(C , 0, S,H,U)

({tally-votes(S,H,U)}

[elect-all/1 :
!elect-all �
hopeful(C ,N)

({!elected(C)}

Single Transferable Vote on a Single Slide

begin/1 :
begin(S,H,U) �
!(Q = U/(S+1) + 1)

({!quota(Q) �
tally-votes(S,H,U)}

tally/1 :
tally-votes(S,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 < Q)

({counted-ballot(C , L) �
hopeful(C ,N+1) �
tally-votes(S,H,U−1)}

tally/2 :
tally-votes(S,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 ≥ Q) �
!(S ≥ 1)

({counted-ballot(C , L) �
!elected(C) �
tally-votes(S−1,H−1,U−1)}

tally/3 :
tally-votes(S,H,U) �
uncounted-ballot(C , [C ′ | L]) �
(!elected(C) � !defeated(C))

({uncounted-ballot(C ′, L) �
tally-votes(S,H,U)}

tally/4 :
tally-votes(S,H,U) �
uncounted-ballot(C , []) �
(!elected(C) � !defeated(C))

({tally-votes(S,H,U−1)}

tally/5 :
tally-votes(S,H, 0) �
!(S < H)

({defeat-min(S,H, 0)}

tally/6 :
tally-votes(S,H, 0) �
!(S ≥ H)

({!elect-all}

defeat-min/1 :
defeat-min(S,H,M) �
hopeful(C ,N)

({minimum(C ,N) �
defeat-min(S,H−1,M+1)}

defeat-min/2 :
defeat-min(S, 0,M)

({defeat-min′(S, 0,M)}

defeat-min′/1 :
defeat-min′(S,H,M) �
minimum(C1,N1) �
minimum(C2,N2) �
!(N1 ≤ N2)

({minimum(C1,N1) �
hopeful(C2,N2) �
defeat-min′(S,H+1,M−1)}

defeat-min′/2 :
defeat-min′(S,H, 1) �
minimum(C ,N)

({!defeated(C) �
transfer(C ,N, S,H, 0)}

transfer/1 :
transfer(C ,N, S,H,U) �
counted-ballot(C , L)

({uncounted-ballot(C , L) �
transfer(C ,N−1, S,H,U+1)}

transfer/2 :
transfer(C , 0, S,H,U)

({tally-votes(S,H,U)}

[elect-all/1 :
!elect-all �
hopeful(C ,N)

({!elected(C)}

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Tally the votes, assigning each ballot to its highest preference
candidate who is neither elected nor defeated.”

Detailed Reading tally/1 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
the quota wouldn’t be reached by this vote, !quota(Q) � !(N+1 < Q)
then mark the ballot as counted and ({counted-ballot(C , L) �
update C ’s tally to N+1 votes and hopeful(C ,N+1) �
tally the remaining U−1 ballots. tally-votes(S ,H,U−1)}

I Correspondence between legal text and logical formula is plain!

I Linearity: count ballots only once and update running tallies.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“If a candidate reaches the quota, he is declared elected.”

Detailed Reading tally/2 :
Otherwise, if we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
this vote would meet the quota and !quota(Q) � !(N+1 ≥ Q) �
there is at least one seat left, !(S ≥ 1)
then mark the ballot as counted and ({counted-ballot(C , L) �
declare candidate C to be elected and !elected(C) �
tally the remaining U−1 ballots among tally-votes(S−1,H−1,U−1)}
the H−1 hopefuls and S−1 seats left.

I ! modality: once declared elected, always declared elected.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“If a candidate reaches the quota, he is declared elected.”

Detailed Reading tally/2 :
Otherwise, if we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
this vote would meet the quota and !quota(Q) � !(N+1 ≥ Q) �
there is at least one seat left, !(S ≥ 1)
then mark the ballot as counted and ({counted-ballot(C , L) �
declare candidate C to be elected and !elected(C) �
tally the remaining U−1 ballots among tally-votes(S−1,H−1,U−1)}
the H−1 hopefuls and S−1 seats left.

I ! modality: once declared elected, always declared elected.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“If a candidate reaches the quota, he is declared elected.”

Detailed Reading tally/2 :
Otherwise, if we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
this vote would meet the quota and !quota(Q) � !(N+1 ≥ Q) �
there is at least one seat left, !(S ≥ 1)
then mark the ballot as counted and ({counted-ballot(C , L) �
declare candidate C to be elected and !elected(C) �
tally the remaining U−1 ballots among tally-votes(S−1,H−1,U−1)}
the H−1 hopefuls and S−1 seats left.

I ! modality: once declared elected, always declared elected.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“If a candidate reaches the quota, he is declared elected.”

Detailed Reading tally/2 :
Otherwise, if we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
this vote would meet the quota and !quota(Q) � !(N+1 ≥ Q) �
there is at least one seat left, !(S ≥ 1)
then mark the ballot as counted and ({counted-ballot(C , L) �
declare candidate C to be elected and !elected(C) �
tally the remaining U−1 ballots among tally-votes(S−1,H−1,U−1)}
the H−1 hopefuls and S−1 seats left.

I ! modality: once declared elected, always declared elected.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“If a candidate reaches the quota, he is declared elected.”

Detailed Reading tally/2 :
Otherwise, if we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
this vote would meet the quota and !quota(Q) � !(N+1 ≥ Q) �
there is at least one seat left, !(S ≥ 1)
then mark the ballot as counted and ({counted-ballot(C , L) �
declare candidate C to be elected and !elected(C) �
tally the remaining U−1 ballots among tally-votes(S−1,H−1,U−1)}
the H−1 hopefuls and S−1 seats left.

I ! modality: once declared elected, always declared elected.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“If a candidate reaches the quota, he is declared elected.”

Detailed Reading tally/2 :
Otherwise, if we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
this vote would meet the quota and !quota(Q) � !(N+1 ≥ Q) �
there is at least one seat left, !(S ≥ 1)
then mark the ballot as counted and ({counted-ballot(C , L) �
declare candidate C to be elected and !elected(C) �
tally the remaining U−1 ballots among tally-votes(S−1,H−1,U−1)}
the H−1 hopefuls and S−1 seats left.

I ! modality: once declared elected, always declared elected.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“If a candidate reaches the quota, he is declared elected.”

Detailed Reading tally/2 :
Otherwise, if we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
this vote would meet the quota and !quota(Q) � !(N+1 ≥ Q) �
there is at least one seat left, !(S ≥ 1)
then mark the ballot as counted and ({counted-ballot(C , L) �
declare candidate C to be elected and !elected(C) �
tally the remaining U−1 ballots among tally-votes(S−1,H−1,U−1)}
the H−1 hopefuls and S−1 seats left.

I ! modality: once declared elected, always declared elected.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“If a candidate reaches the quota, he is declared elected.”

Detailed Reading tally/2 :
Otherwise, if we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , L) �
C is a hopeful with running tally N and hopeful(C ,N) �
this vote would meet the quota and !quota(Q) � !(N+1 ≥ Q) �
there is at least one seat left, !(S ≥ 1)
then mark the ballot as counted and ({counted-ballot(C , L) �
declare candidate C to be elected and !elected(C) �
tally the remaining U−1 ballots among tally-votes(S−1,H−1,U−1)}
the H−1 hopefuls and S−1 seats left.

I ! modality: once declared elected, always declared elected.

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Any surplus votes go to the next preference listed on the ballot.”

Detailed Reading tally/3 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , [C ′ | L]) �
C is either elected or defeated, (!elected(C) � !defeated(C))
then transfer it to the next pref. C ′ and ({uncounted-ballot(C ′, L) �
tally the remaining U ballots. tally-votes(S ,H,U)}

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Any surplus votes go to the next preference listed on the ballot.”

Detailed Reading tally/3 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , [C ′ | L]) �
C is either elected or defeated, (!elected(C) � !defeated(C))
then transfer it to the next pref. C ′ and ({uncounted-ballot(C ′, L) �
tally the remaining U ballots. tally-votes(S ,H,U)}

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Any surplus votes go to the next preference listed on the ballot.”

Detailed Reading tally/3 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , [C ′ | L]) �
C is either elected or defeated, (!elected(C) � !defeated(C))
then transfer it to the next pref. C ′ and ({uncounted-ballot(C ′, L) �
tally the remaining U ballots. tally-votes(S ,H,U)}

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Any surplus votes go to the next preference listed on the ballot.”

Detailed Reading tally/3 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , [C ′ | L]) �
C is either elected or defeated, (!elected(C) � !defeated(C))
then transfer it to the next pref. C ′ and ({uncounted-ballot(C ′, L) �
tally the remaining U ballots. tally-votes(S ,H,U)}

Aspect 1: From Legal Text to Formal Specification

Legal Text
“Any surplus votes go to the next preference listed on the ballot.”

Detailed Reading tally/3 :
If we are tallying votes and tally-votes(S ,H,U) �
there is an uncounted vote for C and uncounted-ballot(C , [C ′ | L]) �
C is either elected or defeated, (!elected(C) � !defeated(C))
then transfer it to the next pref. C ′ and ({uncounted-ballot(C ′, L) �
tally the remaining U ballots. tally-votes(S ,H,U)}

Aspect 2: From Formal Specification to Implementation

tally/1 : Celf Linear Logic Program
tally-votes(S ,H,U) � tally-votes S H (s U’) *

uncounted-ballot(C , L) � uncounted-ballot C L *

hopeful(C ,N) � hopeful C N *

!quota(Q) � !(N+1 < Q) !quota Q * !nat-less (s N) Q

({counted-ballot(C , L) � -o {counted-ballot C L *

hopeful(C ,N+1) � hopeful C (s N) *

tally-votes(S ,H,U−1)} tally-votes S H U’}

I Transliteration of formula to logic programming syntax

I Complete Celf source code of STV available online at
http://www.itu.dk/~carsten/files/voteid2011.tgz

Conclusion

Conclusion

Informal Specification

Implementation

Legal Text

Linear Logical
Formulas

Formal
Specification

Summary

Linear logic is well-suited to the trustworthy specification and
implementation of voting protocols, including STV.

Conclusion

I Elections are safety critical systems

I Decisions regarding trust are never only technical
I Even experts get it wrong

I CADE-STV implements not STV but majority rule
I Over 15 years in use, designed by mathematicians and logicians
I Used for other professional meetings as well
I Come to my talk at CADE

I Awaiting access to the tabulation software for Denmark
I Future Work

I Epistemic connectives to model identiy and secrecy.

Thank you.
www.demtech.dk

Twitter: @DemTechDK

begin/1 :
begin(S ,H,U) �
!(Q = U/(S+1) + 1)

({!quota(Q) �
tally-votes(S ,H,U)}

tally/1 :
tally-votes(S ,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 < Q)

({counted-ballot(C , L) �
hopeful(C ,N+1) �
tally-votes(S ,H,U−1)}

tally/2 :
tally-votes(S ,H,U) �
uncounted-ballot(C , L) �
hopeful(C ,N) �
!quota(Q) � !(N+1 ≥ Q) �
!(S ≥ 1)

({counted-ballot(C , L) �
!elected(C) �
tally-votes(S−1,H−1,U−1)}

tally/3 :
tally-votes(S ,H,U) �
uncounted-ballot(C , [C ′ | L]) �
(!elected(C) � !defeated(C))

({uncounted-ballot(C ′, L) �
tally-votes(S ,H,U)}

tally/4 :
tally-votes(S ,H,U) �
uncounted-ballot(C , []) �
(!elected(C) � !defeated(C))

({tally-votes(S ,H,U−1)}

tally/5 :
tally-votes(S ,H, 0) �
!(S < H)

({defeat-min(S ,H, 0)}
tally/6 :
tally-votes(S ,H, 0) �
!(S ≥ H)

({!elect-all}

defeat-min/1 :
defeat-min(S ,H,M) �
hopeful(C ,N)

({minimum(C ,N) �
defeat-min(S ,H−1,M+1)}

defeat-min/2 :
defeat-min(S , 0,M)

({defeat-min′(S , 0,M)}

defeat-min′/1 :
defeat-min′(S ,H,M) �
minimum(C1,N1) �
minimum(C2,N2) �
!(N1 ≤ N2)

({minimum(C1,N1) �
hopeful(C2,N2) �
defeat-min′(S ,H+1,M−1)}

defeat-min′/2 :
defeat-min′(S ,H, 1) �
minimum(C ,N)

({!defeated(C) �
transfer(C ,N,S ,H, 0)}

transfer/1 :
transfer(C ,N, S ,H,U) �
counted-ballot(C , L)

({uncounted-ballot(C , L) �
transfer(C ,N−1,S ,H,U+1)}

transfer/2 :
transfer(C , 0,S ,H,U)

({tally-votes(S ,H,U)}

elect-all/1 :
!elect-all �
hopeful(C ,N)

({!elected(C)}

Why not use traditional first-order logic?

To motivate the use of linear logic and illustrate its connectives,
let’s develop a specification of the voter check-in process.

I Let’s try to use a traditional logical formula:

voting-auth-card→ blank-ballot

“If I have an authorization card, then I can have a blank ballot.”

I Not quite right. This formula allows the voter to keep his card:

` voting-auth-card→ blank-ballot ∧ voting-auth-card

I Worse, it allows ballot stuffing:

` voting-auth-card→ blank-ballot ∧ · · · ∧ blank-ballot ∧
voting-auth-card

Solution: Use linear logic!

Why not use traditional first-order logic?

To motivate the use of linear logic and illustrate its connectives,
let’s develop a specification of the voter check-in process.

I Let’s try to use a traditional logical formula:

voting-auth-card→ blank-ballot

“If I have an authorization card, then I can have a blank ballot.”

I Not quite right. This formula allows the voter to keep his card:

` voting-auth-card→ blank-ballot ∧ voting-auth-card

I Worse, it allows ballot stuffing:

` voting-auth-card→ blank-ballot ∧ · · · ∧ blank-ballot ∧
voting-auth-card

Solution: Use linear logic!

Why not use traditional first-order logic?

To motivate the use of linear logic and illustrate its connectives,
let’s develop a specification of the voter check-in process.

I Let’s try to use a traditional logical formula:

voting-auth-card→ blank-ballot

“If I have an authorization card, then I can have a blank ballot.”

I Not quite right. This formula allows the voter to keep his card:

` voting-auth-card→ blank-ballot ∧ voting-auth-card

I Worse, it allows ballot stuffing:

` voting-auth-card→ blank-ballot ∧ · · · ∧ blank-ballot ∧
voting-auth-card

Solution: Use linear logic!

Why not use traditional first-order logic?

To motivate the use of linear logic and illustrate its connectives,
let’s develop a specification of the voter check-in process.

I Let’s try to use a traditional logical formula:

voting-auth-card→ blank-ballot

“If I have an authorization card, then I can have a blank ballot.”

I Not quite right. This formula allows the voter to keep his card:

` voting-auth-card→ blank-ballot ∧ voting-auth-card

I Worse, it allows ballot stuffing:

` voting-auth-card→ blank-ballot ∧ · · · ∧ blank-ballot ∧
voting-auth-card

Solution: Use linear logic!

Why not use traditional first-order logic?

To motivate the use of linear logic and illustrate its connectives,
let’s develop a specification of the voter check-in process.

I Let’s try to use a traditional logical formula:

voting-auth-card→ blank-ballot

“If I have an authorization card, then I can have a blank ballot.”

I Not quite right. This formula allows the voter to keep his card:

` voting-auth-card→ blank-ballot ∧ voting-auth-card

I Worse, it allows ballot stuffing:

` voting-auth-card→ blank-ballot ∧ · · · ∧ blank-ballot ∧
voting-auth-card

Solution: Use linear logic!

Why not use traditional first-order logic?

To motivate the use of linear logic and illustrate its connectives,
let’s develop a specification of the voter check-in process.

I Let’s try to use a traditional logical formula:

voting-auth-card→ blank-ballot

“If I have an authorization card, then I can have a blank ballot.”

I Not quite right. This formula allows the voter to keep his card:

` voting-auth-card→ blank-ballot ∧ voting-auth-card

I Worse, it allows ballot stuffing:

` voting-auth-card→ blank-ballot ∧ · · · ∧ blank-ballot ∧
voting-auth-card

Solution: Use linear logic!

Why not use traditional first-order logic?

To motivate the use of linear logic and illustrate its connectives,
let’s develop a specification of the voter check-in process.

I Let’s try to use a traditional logical formula:

voting-auth-card→ blank-ballot

“If I have an authorization card, then I can have a blank ballot.”

I Not quite right. This formula allows the voter to keep his card:

` voting-auth-card→ blank-ballot ∧ voting-auth-card

I Worse, it allows ballot stuffing:

` voting-auth-card→ blank-ballot ∧ · · · ∧ blank-ballot ∧
voting-auth-card

Solution: Use linear logic!

	Introduction
	Case Study: Denmark
	A Brief Introduction to Linear Logic
	A Linear Logical Specification of Single Transferable Vote
	Conclusion

